ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.05517
13
5

WeatherGNN: Exploiting Meteo- and Spatial-Dependencies for Local Numerical Weather Prediction Bias-Correction

9 October 2023
Binqing Wu
Weiqiu Chen
Wengwei Wang
Bingqing Peng
Liang Sun
Ling Chen
ArXivPDFHTML
Abstract

Due to insufficient local area information, numerical weather prediction (NWP) may yield biases for specific areas. Previous studies correct biases mainly by employing handcrafted features or applying data-driven methods intuitively, overlooking the complicated dependencies between weather factors and between areas. To address this issue, we propose WeatherGNN, a local NWP bias-correction method that utilizes Graph Neural Networks (GNNs) to exploit meteorological dependencies and spatial dependencies under the guidance of domain knowledge. Specifically, we introduce a factor GNN to capture area-specific meteorological dependencies adaptively based on spatial heterogeneity and a fast hierarchical GNN to capture dynamic spatial dependencies efficiently guided by Tobler's first and second laws of geography. Our experimental results on two real-world datasets demonstrate that WeatherGNN achieves the state-of-the-art performance, outperforming the best baseline with an average of 4.75 \% on RMSE.

View on arXiv
Comments on this paper