ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.06155
20
44

CoQuest: Exploring Research Question Co-Creation with an LLM-based Agent

9 October 2023
Yiren Liu
Si Chen
Haocong Cheng
Mengxia Yu
Xiao Ran
Andrew Mo
Yiliu Tang
Yun Huang
    LLMAG
ArXivPDFHTML
Abstract

Developing novel research questions (RQs) often requires extensive literature reviews, especially in interdisciplinary fields. To support RQ development through human-AI co-creation, we leveraged Large Language Models (LLMs) to build an LLM-based agent system named CoQuest. We conducted an experiment with 20 HCI researchers to examine the impact of two interaction designs: breadth-first and depth-first RQ generation. The findings revealed that participants perceived the breadth-first approach as more creative and trustworthy upon task completion. Conversely, during the task, participants considered the depth-first generated RQs as more creative. Additionally, we discovered that AI processing delays allowed users to reflect on multiple RQs simultaneously, leading to a higher quantity of generated RQs and an enhanced sense of control. Our work makes both theoretical and practical contributions by proposing and evaluating a mental model for human-AI co-creation of RQs. We also address potential ethical issues, such as biases and over-reliance on AI, advocating for using the system to improve human research creativity rather than automating scientific inquiry.

View on arXiv
Comments on this paper