ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.08002
11
0

MLP-AMDC: An MLP Architecture for Adaptive-Mask-based Dual-Camera snapshot hyperspectral imaging

12 October 2023
Zeyu Cai
Can Zhang
Xunhao Chen
Shanghuan Liu
Chengqian Jin
Feipeng Da
ArXivPDFHTML
Abstract

Coded Aperture Snapshot Spectral Imaging (CASSI) system has great advantages over traditional methods in dynamically acquiring Hyper-Spectral Image (HSI), but there are the following problems. 1) Traditional mask relies on random patterns or analytical design, both of which limit the performance improvement of CASSI. 2) Existing high-quality reconstruction algorithms are slow in reconstruction and can only reconstruct scene information offline. To address the above two problems, this paper designs the AMDC-CASSI system, introducing RGB camera with CASSI based on Adaptive-Mask as multimodal input to improve the reconstruction quality. The existing SOTA reconstruction schemes are based on transformer, but the operation of self-attention pulls down the operation efficiency of the network. In order to improve the inference speed of the reconstruction network, this paper proposes An MLP Architecture for Adaptive-Mask-based Dual-Camera (MLP-AMDC) to replace the transformer structure of the network. Numerous experiments have shown that MLP performs no less well than transformer-based structures for HSI reconstruction, while MLP greatly improves the network inference speed and has less number of parameters and operations, our method has a 8 db improvement over SOTA and at least a 5-fold improvement in reconstruction speed. (https://github.com/caizeyu1992/MLP-AMDC.)

View on arXiv
Comments on this paper