ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.08464
25
3

Crowdsourced and Automatic Speech Prominence Estimation

12 October 2023
Max Morrison
P. Pawar
Nathan Pruyne
Jennifer Cole
Bryan Pardo
ArXivPDFHTML
Abstract

The prominence of a spoken word is the degree to which an average native listener perceives the word as salient or emphasized relative to its context. Speech prominence estimation is the process of assigning a numeric value to the prominence of each word in an utterance. These prominence labels are useful for linguistic analysis, as well as training automated systems to perform emphasis-controlled text-to-speech or emotion recognition. Manually annotating prominence is time-consuming and expensive, which motivates the development of automated methods for speech prominence estimation. However, developing such an automated system using machine-learning methods requires human-annotated training data. Using our system for acquiring such human annotations, we collect and open-source crowdsourced annotations of a portion of the LibriTTS dataset. We use these annotations as ground truth to train a neural speech prominence estimator that generalizes to unseen speakers, datasets, and speaking styles. We investigate design decisions for neural prominence estimation as well as how neural prominence estimation improves as a function of two key factors of annotation cost: dataset size and the number of annotations per utterance.

View on arXiv
Comments on this paper