ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.09397
11
2

Identifiability of Product of Experts Models

13 October 2023
Spencer Gordon
Manav Kant
Eric Y. Ma
Leonard J. Schulman
Andrei C. Staicu
    MoE
ArXivPDFHTML
Abstract

Product of experts (PoE) are layered networks in which the value at each node is an AND (or product) of the values (possibly negated) at its inputs. These were introduced as a neural network architecture that can efficiently learn to generate high-dimensional data which satisfy many low-dimensional constraints -- thereby allowing each individual expert to perform a simple task. PoEs have found a variety of applications in learning. We study the problem of identifiability of a product of experts model having a layer of binary latent variables, and a layer of binary observables that are iid conditional on the latents. The previous best upper bound on the number of observables needed to identify the model was exponential in the number of parameters. We show: (a) When the latents are uniformly distributed, the model is identifiable with a number of observables equal to the number of parameters (and hence best possible). (b) In the more general case of arbitrarily distributed latents, the model is identifiable for a number of observables that is still linear in the number of parameters (and within a factor of two of best-possible). The proofs rely on root interlacing phenomena for some special three-term recurrences.

View on arXiv
Comments on this paper