ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.09628
22
0

Federated Battery Diagnosis and Prognosis

14 October 2023
Nur Banu Altinpulluk
Deniz Altinpulluk
P. Ramanan
Noah H. Paulson
Feng Qiu
Susan Babinec
Murat Yildirim
ArXivPDFHTML
Abstract

Battery diagnosis, prognosis and health management models play a critical role in the integration of battery systems in energy and mobility fields. However, large-scale deployment of these models is hindered by a myriad of challenges centered around data ownership, privacy, communication, and processing. State-of-the-art battery diagnosis and prognosis methods require centralized collection of data, which further aggravates these challenges. Here we propose a federated battery prognosis model, which distributes the processing of battery standard current-voltage-time-usage data in a privacy-preserving manner. Instead of exchanging raw standard current-voltage-time-usage data, our model communicates only the model parameters, thus reducing communication load and preserving data confidentiality. The proposed model offers a paradigm shift in battery health management through privacy-preserving distributed methods for battery data processing and remaining lifetime prediction.

View on arXiv
Comments on this paper