ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.09824
17
0

Overconstrained Robotic Limb with Energy-Efficient, Omni-directional Locomotion

15 October 2023
Ronghan Xu
Jiayi Yin
Shihao Feng
Bangchao Huang
Haoran Sun
Jia Pan
Fang Wan
Chaoyang Song
ArXivPDFHTML
Abstract

This paper studies the design, modeling, and control of a novel quadruped, featuring overconstrained robotic limbs employing the Bennett linkage for motion and power transmission. The modular limb design allows the robot to morph into reptile- or mammal-inspired forms. In contrast to the prevailing focus on planar limbs, this research delves into the classical overconstrained linkages, which have strong theoretical foundations in advanced kinematics but limited engineering applications. The study showcases the morphological superiority of overconstrained robotic limbs that can transform into planar or spherical limbs, exemplifying the Bennett linkage. By conducting kinematic and dynamic modeling, we apply model predictive control to simulate a range of locomotion tasks, revealing that overconstrained limbs outperform planar designs in omni-directional tasks like forward trotting, lateral trotting, and turning on the spot when considering foothold distances. These findings highlight the biological distinctions in limb design between reptiles and mammals and represent the first documented instance of overconstrained robotic limbs outperforming planar designs in dynamic locomotion.

View on arXiv
Comments on this paper