ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.09946
17
3

UvA-MT's Participation in the WMT23 General Translation Shared Task

15 October 2023
Di Wu
Shaomu Tan
David Stap
Ali Araabi
Christof Monz
ArXivPDFHTML
Abstract

This paper describes the UvA-MT's submission to the WMT 2023 shared task on general machine translation. We participate in the constrained track in two directions: English <-> Hebrew. In this competition, we show that by using one model to handle bidirectional tasks, as a minimal setting of Multilingual Machine Translation (MMT), it is possible to achieve comparable results with that of traditional bilingual translation for both directions. By including effective strategies, like back-translation, re-parameterized embedding table, and task-oriented fine-tuning, we obtained competitive final results in the automatic evaluation for both English -> Hebrew and Hebrew -> English directions.

View on arXiv
Comments on this paper