ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.10059
13
10

Flow Dynamics Correction for Action Recognition

16 October 2023
Lei Wang
Piotr Koniusz
ArXivPDFHTML
Abstract

Various research studies indicate that action recognition performance highly depends on the types of motions being extracted and how accurate the human actions are represented. In this paper, we investigate different optical flow, and features extracted from these optical flow that capturing both short-term and long-term motion dynamics. We perform power normalization on the magnitude component of optical flow for flow dynamics correction to boost subtle or dampen sudden motions. We show that existing action recognition models which rely on optical flow are able to get performance boosted with our corrected optical flow. To further improve performance, we integrate our corrected flow dynamics into popular models through a simple hallucination step by selecting only the best performing optical flow features, and we show that by 'translating' the CNN feature maps into these optical flow features with different scales of motions leads to the new state-of-the-art performance on several benchmarks including HMDB-51, YUP++, fine-grained action recognition on MPII Cooking Activities, and large-scale Charades.

View on arXiv
Comments on this paper