23
0

A Car Model Identification System for Streamlining the Automobile Sales Process

Abstract

This project presents an automated solution for the efficient identification of car models and makes from images, aimed at streamlining the vehicle listing process on online car-selling platforms. Through a thorough exploration encompassing various efficient network architectures including Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), and hybrid models, we achieved a notable accuracy of 81.97% employing the EfficientNet (V2 b2) architecture. To refine performance, a combination of strategies, including data augmentation, fine-tuning pretrained models, and extensive hyperparameter tuning, were applied. The trained model offers the potential for automating information extraction, promising enhanced user experiences across car-selling websites.

View on arXiv
Comments on this paper