ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.14435
19
3

Retrieval-Augmented Chain-of-Thought in Semi-structured Domains

22 October 2023
Vaibhav Mavi
Abulhair Saparov
Chen Zhao
    LRM
ArXivPDFHTML
Abstract

Applying existing question answering (QA) systems to specialized domains like law and finance presents challenges that necessitate domain expertise. Although large language models (LLMs) have shown impressive language comprehension and in-context learning capabilities, their inability to handle very long inputs/contexts is well known. Tasks specific to these domains need significant background knowledge, leading to contexts that can often exceed the maximum length that existing LLMs can process. This study explores leveraging the semi-structured nature of legal and financial data to efficiently retrieve relevant context, enabling the use of LLMs for domain-specialized QA. The resulting system outperforms contemporary models and also provides useful explanations for the answers, encouraging the integration of LLMs into legal and financial NLP systems for future research.

View on arXiv
Comments on this paper