ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.16164
17
12

Conversational Challenges in AI-Powered Data Science: Obstacles, Needs, and Design Opportunities

24 October 2023
Bhavya Chopra
Ananya Singha
Anna Fariha
Sumit Gulwani
Chris Parnin
Ashish Tiwari
Austin Z. Henley
ArXivPDFHTML
Abstract

Large Language Models (LLMs) are being increasingly employed in data science for tasks like data preprocessing and analytics. However, data scientists encounter substantial obstacles when conversing with LLM-powered chatbots and acting on their suggestions and answers. We conducted a mixed-methods study, including contextual observations, semi-structured interviews (n=14), and a survey (n=114), to identify these challenges. Our findings highlight key issues faced by data scientists, including contextual data retrieval, formulating prompts for complex tasks, adapting generated code to local environments, and refining prompts iteratively. Based on these insights, we propose actionable design recommendations, such as data brushing to support context selection, and inquisitive feedback loops to improve communications with AI-based assistants in data-science tools.

View on arXiv
Comments on this paper