ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.16314
22
0

Understanding Code Semantics: An Evaluation of Transformer Models in Summarization

25 October 2023
Debanjan Mondal
Abhilasha Lodha
Ankita Sahoo
Beena Kumari
ArXivPDFHTML
Abstract

This paper delves into the intricacies of code summarization using advanced transformer-based language models. Through empirical studies, we evaluate the efficacy of code summarization by altering function and variable names to explore whether models truly understand code semantics or merely rely on textual cues. We have also introduced adversaries like dead code and commented code across three programming languages (Python, Javascript, and Java) to further scrutinize the model's understanding. Ultimately, our research aims to offer valuable insights into the inner workings of transformer-based LMs, enhancing their ability to understand code and contributing to more efficient software development practices and maintenance workflows.

View on arXiv
Comments on this paper