ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.16867
186
8
v1v2 (latest)

An Explainable Deep Learning-Based Method For Schizophrenia Diagnosis Using Generative Data-Augmentation

IEEE Access (IEEE Access), 2023
25 October 2023
Mehrshad Saadatinia
Armin Salimi-Badr
ArXiv (abs)PDFHTML
Abstract

In this study, we leverage a deep learning-based method for the automatic diagnosis of schizophrenia using EEG brain recordings. This approach utilizes generative data augmentation, a powerful technique that enhances the accuracy of the diagnosis. To enable the utilization of time-frequency features, spectrograms were extracted from the raw signals. After exploring several neural network architectural setups, a proper convolutional neural network (CNN) was used for the initial diagnosis. Subsequently, using Wasserstein GAN with Gradient Penalty (WGAN-GP) and Variational Autoencoder (VAE), two different synthetic datasets were generated in order to augment the initial dataset and address the over-fitting issue. The augmented dataset using VAE achieved a 3.0\% improvement in accuracy reaching up to 99.0\% and yielded a lower loss value as well as a faster convergence. Finally, we addressed the lack of trust in black-box models using the Local Interpretable Model-agnostic Explanations (LIME) algorithm to determine the most important superpixels (frequencies) in the diagnosis process.

View on arXiv
Comments on this paper