ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.01223
19
31

Diffusion Models for Reinforcement Learning: A Survey

2 November 2023
Zhengbang Zhu
Hanye Zhao
Haoran He
Yichao Zhong
Shenyu Zhang
Haoquan Guo
Tingting Chen
Weinan Zhang
ArXivPDFHTML
Abstract

Diffusion models surpass previous generative models in sample quality and training stability. Recent works have shown the advantages of diffusion models in improving reinforcement learning (RL) solutions. This survey aims to provide an overview of this emerging field and hopes to inspire new avenues of research. First, we examine several challenges encountered by RL algorithms. Then, we present a taxonomy of existing methods based on the roles of diffusion models in RL and explore how the preceding challenges are addressed. We further outline successful applications of diffusion models in various RL-related tasks. Finally, we conclude the survey and offer insights into future research directions. We are actively maintaining a GitHub repository for papers and other related resources in utilizing diffusion models in RL: https://github.com/apexrl/Diff4RLSurvey.

View on arXiv
Comments on this paper