ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.01743
23
3

Energy Efficiency Optimization for Subterranean LoRaWAN Using A Reinforcement Learning Approach: A Direct-to-Satellite Scenario

3 November 2023
Kaiqiang Lin
Muhammad Asad Ullah
Hirley Alves
K. Mikhaylov
T. Hao
ArXivPDFHTML
Abstract

The integration of subterranean LoRaWAN and non-terrestrial networks (NTN) delivers substantial economic and societal benefits in remote agriculture and disaster rescue operations. The LoRa modulation leverages quasi-orthogonal spreading factors (SFs) to optimize data rates, airtime, coverage and energy consumption. However, it is still challenging to effectively assign SFs to end devices for minimizing co-SF interference in massive subterranean LoRaWAN NTN. To address this, we investigate a reinforcement learning (RL)-based SFs allocation scheme to optimize the system's energy efficiency (EE). To efficiently capture the device-to-environment interactions in dense networks, we proposed an SFs allocation technique using the multi-agent dueling double deep Q-network (MAD3QN) and the multi-agent advantage actor-critic (MAA2C) algorithms based on an analytical reward mechanism. Our proposed RL-based SFs allocation approach evinces better performance compared to four benchmarks in the extreme underground direct-to-satellite scenario. Remarkably, MAD3QN shows promising potentials in surpassing MAA2C in terms of convergence rate and EE.

View on arXiv
Comments on this paper