ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.02667
24
5

Race Against the Machine: a Fully-annotated, Open-design Dataset of Autonomous and Piloted High-speed Flight

5 November 2023
Michael Bosello
Davide Aguiari
Yvo Keuter
Enrico Pallotta
Sara Kiade
Gyordan Caminati
Flavio Pinzarrone
Junaid Halepota
Jacopo Panerati
Giovanni Pau
ArXivPDFHTML
Abstract

Unmanned aerial vehicles, and multi-rotors in particular, can now perform dexterous tasks in impervious environments, from infrastructure monitoring to emergency deliveries. Autonomous drone racing has emerged as an ideal benchmark to develop and evaluate these capabilities. Its challenges include accurate and robust visual-inertial odometry during aggressive maneuvers, complex aerodynamics, and constrained computational resources. As researchers increasingly channel their efforts into it, they also need the tools to timely and equitably compare their results and advances. With this dataset, we want to (i) support the development of new methods and (ii) establish quantitative comparisons for approaches originating from the broader robotics and artificial intelligence communities. We want to provide a one-stop resource that is comprehensive of (i) aggressive autonomous and piloted flight, (ii) high-resolution, high-frequency visual, inertial, and motion capture data, (iii) commands and control inputs, (iv) multiple light settings, and (v) corner-level labeling of drone racing gates. We also release the complete specifications to recreate our flight platform, using commercial off-the-shelf components and the open-source flight controller Betaflight, to democratize drone racing research. Our dataset, open-source scripts, and drone design are available at: https://github.com/tii-racing/drone-racing-dataset

View on arXiv
Comments on this paper