ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.02929
25
6

SoK: Evaluations in Industrial Intrusion Detection Research

6 November 2023
Olav Lamberts
Konrad Wolsing
Eric Wagner
Jan Pennekamp
Jan Bauer
Klaus Wehrle
Martin Henze
ArXivPDFHTML
Abstract

Industrial systems are increasingly threatened by cyberattacks with potentially disastrous consequences. To counter such attacks, industrial intrusion detection systems strive to timely uncover even the most sophisticated breaches. Due to its criticality for society, this fast-growing field attracts researchers from diverse backgrounds, resulting in 130 new detection approaches in 2021 alone. This huge momentum facilitates the exploration of diverse promising paths but likewise risks fragmenting the research landscape and burying promising progress. Consequently, it needs sound and comprehensible evaluations to mitigate this risk and catalyze efforts into sustainable scientific progress with real-world applicability. In this paper, we therefore systematically analyze the evaluation methodologies of this field to understand the current state of industrial intrusion detection research. Our analysis of 609 publications shows that the rapid growth of this research field has positive and negative consequences. While we observe an increased use of public datasets, publications still only evaluate 1.3 datasets on average, and frequently used benchmarking metrics are ambiguous. At the same time, the adoption of newly developed benchmarking metrics sees little advancement. Finally, our systematic analysis enables us to provide actionable recommendations for all actors involved and thus bring the entire research field forward.

View on arXiv
Comments on this paper