ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.04599
19
0
v1v2 (latest)

Explainable artificial intelligence model for identifying Market Value in Professional Soccer Players

8 November 2023
Chunyang Huang
Shaoliang Zhang
ArXiv (abs)PDFHTML
Abstract

This study introduces an advanced machine learning method for predicting soccer players' market values, combining ensemble models and the Shapley Additive Explanations (SHAP) for interpretability. Utilizing data from about 12,000 players from Sofifa, the Boruta algorithm streamlined feature selection. The Gradient Boosting Decision Tree (GBDT) model excelled in predictive accuracy, with an R-squared of 0.901 and a Root Mean Squared Error (RMSE) of 3,221,632.175. Player attributes in skills, fitness, and cognitive areas significantly influenced market value. These insights aid sports industry stakeholders in player valuation. However, the study has limitations, like underestimating superstar players' values and needing larger datasets. Future research directions include enhancing the model's applicability and exploring value prediction in various contexts.

View on arXiv
Comments on this paper