ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.04664
173
23
v1v2 (latest)

Speech language models lack important brain-relevant semantics

8 November 2023
R. Mamidi
Emin cCelik
Fatma Deniz
Mariya Toneva
ArXiv (abs)PDFHTMLGithub (9★)
Abstract

Despite known differences between reading and listening in the brain, recent work has shown that text-based language models predict both text-evoked and speech-evoked brain activity to an impressive degree. This poses the question of what types of information language models truly predict in the brain. We investigate this question via a direct approach, in which we eliminate information related to specific low-level stimulus features (textual, speech, and visual) in the language model representations, and observe how this intervention affects the alignment with fMRI brain recordings acquired while participants read versus listened to the same naturalistic stories. We further contrast our findings with speech-based language models, which would be expected to predict speech-evoked brain activity better, provided they model language processing in the brain well. Using our direct approach, we find that both text-based and speech-based language models align well with early sensory regions due to shared low-level features. Text-based models continue to align well with later language regions even after removing these features, while, surprisingly, speech-based models lose most of their alignment. These findings suggest that speech-based models can be further improved to better reflect brain-like language processing.

View on arXiv
Comments on this paper