(Abridged) Designing computationally efficient algorithms in the agnostic
learning model (Haussler, 1992; Kearns et al., 1994) is notoriously difficult.
In this work, we consider agnostic learning with membership queries for
touchstone classes at the frontier of agnostic learning, with a focus on how
much computation can be saved over the trivial runtime of 2^n.Thisapproachisinspiredbyandcontinuesthestudyof‘‘learningwithnontrivialsavings′′(ServedioandTan,2017).Tothisend,weestablishmultipleagnosticlearningalgorithms,highlightedby:1.Anagnosticlearningalgorithmforcircuitsconsistingofasublinearnumberofgates,whichcaneachbeanyfunctioncomputablebyasublogarithmicdegreekpolynomialthresholdfunction(thedepthofthecircuitisboundedonlybysize).Thisalgorithmrunsintime2n−s(n)fors(n)≈n/(k+1),andlearnsovertheuniformdistributionoverunlabelledexampleson{0,1}n.2.Anagnosticlearningalgorithmforcircuitsconsistingofasublinearnumberofgates,whereeachcanbeanyfunctioncomputablebya\sym+circuitofsubexponentialsizeandsublogarithmicdegreek.Thisalgorithmrunsintime2n−s(n)fors(n)≈n/(k+1),andlearnsoverdistributionsofunlabelledexamplesthatareproductsofk+1arbitraryandunknowndistributions,eachover{0,1}n/(k+1)(assumewithoutlossofgeneralitythatk+1dividesn).