ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.06753
14
33

AudioChatLlama: Towards General-Purpose Speech Abilities for LLMs

12 November 2023
Yassir Fathullah
Chunyang Wu
Egor Lakomkin
Ke Li
Junteng Jia
Shangguan Yuan
Jay Mahadeokar
Ozlem Kalinli
Christian Fuegen
Michael Seltzer
    LM&MA
    MLLM
    AuLLM
ArXivPDFHTML
Abstract

In this work, we extend the instruction-tuned Llama-2 model with end-to-end general-purpose speech processing and reasoning abilities while maintaining the wide range of original LLM capabilities, without using any carefully curated paired data. The resulting end-to-end model, named AudioChatLlama, can utilize audio prompts as a replacement for text and sustain a conversation. Such a model also has extended cross-modal capabilities such as being able to perform spoken question answering (QA), speech translation, and audio summarization amongst many other closed and open-domain tasks. This is unlike prior approaches in speech, in which LLMs are extended to handle audio for a limited number of pre-designated tasks. On both synthesized and recorded speech QA test sets, evaluations show that our end-to-end approach is on par with or outperforms cascaded systems (speech recognizer + LLM) in terms of modeling the response to a prompt. Furthermore, unlike cascades, our approach can interchange text and audio modalities and intrinsically utilize prior context in a conversation to provide better results.

View on arXiv
Comments on this paper