ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.07230
24
17

How are Prompts Different in Terms of Sensitivity?

13 November 2023
Sheng Lu
Hendrik Schuff
Iryna Gurevych
ArXivPDFHTML
Abstract

In-context learning (ICL) has become one of the most popular learning paradigms. While there is a growing body of literature focusing on prompt engineering, there is a lack of systematic analysis comparing the effects of prompts across different models and tasks. To address this gap, we present a comprehensive prompt analysis based on the sensitivity of a function. Our analysis reveals that sensitivity is an unsupervised proxy for model performance, as it exhibits a strong negative correlation with accuracy. We use gradient-based saliency scores to empirically demonstrate how different prompts affect the relevance of input tokens to the output, resulting in different levels of sensitivity. Furthermore, we introduce sensitivity-aware decoding which incorporates sensitivity estimation as a penalty term in the standard greedy decoding. We show that this approach is particularly helpful when information in the input is scarce. Our work provides a fresh perspective on the analysis of prompts, and contributes to a better understanding of the mechanism of ICL.

View on arXiv
Comments on this paper