ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.08894
21
5

Few-shot Transfer Learning for Knowledge Base Question Answering: Fusing Supervised Models with In-Context Learning

15 November 2023
Mayur Patidar
Riya Sawhney
Avinash Kumar Singh
Biswajit Chatterjee
Mausam
Indrajit Bhattacharya
ArXivPDFHTML
Abstract

Existing Knowledge Base Question Answering (KBQA) architectures are hungry for annotated data, which make them costly and time-consuming to deploy. We introduce the problem of few-shot transfer learning for KBQA, where the target domain offers only a few labeled examples, but a large labeled training dataset is available in a source domain. We propose a novel KBQA architecture called FuSIC-KBQA that performs KB-retrieval using multiple source-trained retrievers, re-ranks using an LLM and uses this as input for LLM few-shot in-context learning to generate logical forms. These are further refined using execution-guided feedback. Experiments over multiple source-target KBQA pairs of varying complexity show that FuSIC-KBQA significantly outperforms adaptations of SoTA KBQA models for this setting. Additional experiments show that FuSIC-KBQA also outperforms SoTA KBQA models in the in-domain setting when training data is limited.

View on arXiv
Comments on this paper