401

ExpM+NF Tractable Exponential Mechanism via Normalizing Flow, A Path through the Accuracy-Privacy Ceiling Constraining Differentially Private ML

Abstract

The Exponential Mechanism (ExpM), a differentially private optimization method, promises many advantages over Differentially Private Stochastic Gradient Descent (DPSGD), the state-of-the-art (SOTA) and de facto method for differentially private machine learning (ML). Yet, ExpM has been historically stymied from differentially private training of modern ML algorithms by two obstructions: ExpM requires a sensitivity bound for the given loss function; ExpM requires sampling from a historically intractable density. We prove a sensitivity bound for (2)\ell(2) loss, and investigate using Normalizing Flows (NFs), deep networks furnishing approximate sampling from the otherwise intractable ExpM distribution. We prove that as the NF output converges to ExpM distribution, the privacy (ε\varepsilon) of an NF sample converges to that of the ExpM distribution. Under the assumption that the NF output distribution is the ExpM distribution, we empirically test ExpM+NF against DPSGD using the SOTA implementation (Opacus \cite{opacus} with PRV accounting) in multiple classification tasks on the Adult Dataset (census data) and MIMIC-III Dataset (healthcare records) using Logistic Regression and GRU-D, a deep learning recurrent neural network with \smallsim 20K-100K parameters. In all experiments we find ExpM+NF achieves greater than 94\% of the non-private training accuracy (AUC) with ε\varepsilon-DP for ε\varepsilon a low as 1e31\mathrm{e}{-3} -- three orders of magnitude stronger privacy with similar accuracy. Further, performance results show ExpM+NF training time is comparable to (slightly less) than DPSGD. Limitations and future directions are provided; notably, research on NF approximation accuracy and its effect on privacy are a promising avenue to substantially advancing the field. Code for these experiments \hl{will be provided after review}.

View on arXiv
Comments on this paper