ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.09404
11
1

To Translate or Not to Translate: A Systematic Investigation of Translation-Based Cross-Lingual Transfer to Low-Resource Languages

15 November 2023
Benedikt Ebing
Goran Glavas
ArXivPDFHTML
Abstract

Perfect machine translation (MT) would render cross-lingual transfer (XLT) by means of multilingual language models (mLMs) superfluous. Given, on the one hand, the large body of work on improving XLT with mLMs and, on the other hand, recent advances in massively multilingual MT, in this work, we systematically evaluate existing and propose new translation-based XLT approaches for transfer to low-resource languages. We show that all translation-based approaches dramatically outperform zero-shot XLT with mLMs -- with the combination of round-trip translation of the source-language training data and the translation of the target-language test instances at inference -- being generally the most effective. We next show that one can obtain further empirical gains by adding reliable translations to other high-resource languages to the training data. Moreover, we propose an effective translation-based XLT strategy even for languages not supported by the MT system. Finally, we show that model selection for XLT based on target-language validation data obtained with MT outperforms model selection based on the source-language data. We believe our findings warrant a broader inclusion of more robust translation-based baselines in XLT research.

View on arXiv
Comments on this paper