ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.09817
19
16

Neural-Logic Human-Object Interaction Detection

16 November 2023
Liulei Li
Jianan Wei
Wenguan Wang
Yi Yang
ArXivPDFHTML
Abstract

The interaction decoder utilized in prevalent Transformer-based HOI detectors typically accepts pre-composed human-object pairs as inputs. Though achieving remarkable performance, such paradigm lacks feasibility and cannot explore novel combinations over entities during decoding. We present L OGIC HOI, a new HOI detector that leverages neural-logic reasoning and Transformer to infer feasible interactions between entities. Specifically, we modify the self-attention mechanism in vanilla Transformer, enabling it to reason over the <human, action, object> triplet and constitute novel interactions. Meanwhile, such reasoning process is guided by two crucial properties for understanding HOI: affordances (the potential actions an object can facilitate) and proxemics (the spatial relations between humans and objects). We formulate these two properties in first-order logic and ground them into continuous space to constrain the learning process of our approach, leading to improved performance and zero-shot generalization capabilities. We evaluate L OGIC HOI on V-COCO and HICO-DET under both normal and zero-shot setups, achieving significant improvements over existing methods.

View on arXiv
Comments on this paper