ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.10093
34
32

The Chosen One: Consistent Characters in Text-to-Image Diffusion Models

16 November 2023
Omri Avrahami
Amir Hertz
Yael Vinker
Moab Arar
Shlomi Fruchter
Ohad Fried
Daniel Cohen-Or
Dani Lischinski
    DiffM
ArXivPDFHTML
Abstract

Recent advances in text-to-image generation models have unlocked vast potential for visual creativity. However, the users that use these models struggle with the generation of consistent characters, a crucial aspect for numerous real-world applications such as story visualization, game development, asset design, advertising, and more. Current methods typically rely on multiple pre-existing images of the target character or involve labor-intensive manual processes. In this work, we propose a fully automated solution for consistent character generation, with the sole input being a text prompt. We introduce an iterative procedure that, at each stage, identifies a coherent set of images sharing a similar identity and extracts a more consistent identity from this set. Our quantitative analysis demonstrates that our method strikes a better balance between prompt alignment and identity consistency compared to the baseline methods, and these findings are reinforced by a user study. To conclude, we showcase several practical applications of our approach.

View on arXiv
Comments on this paper