ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.10777
11
3

A Systematic Review of Aspect-based Sentiment Analysis (ABSA): Domains, Methods, and Trends

16 November 2023
Y. Hua
Paul Denny
Katerina Taskova
Jorg Wicker
ArXivPDFHTML
Abstract

Aspect-based Sentiment Analysis (ABSA) is a fine-grained type of sentiment analysis that identifies aspects and their associated opinions from a given text. With the surge of digital opinionated text data, ABSA gained increasing popularity for its ability to mine more detailed and targeted insights. Many review papers on ABSA subtasks and solution methodologies exist, however, few focus on trends over time or systemic issues relating to research application domains, datasets, and solution approaches. To fill the gap, this paper presents a Systematic Literature Review (SLR) of ABSA studies with a focus on trends and high-level relationships among these fundamental components. This review is one of the largest SLRs on ABSA, and also, to our knowledge, the first that systematically examines the trends and inter-relations among ABSA research and data distribution across domains and solution paradigms and approaches. Our sample includes 519 primary studies screened from 4191 search results without time constraints via an innovative automatic filtering process. Our quantitative analysis not only identifies trends in nearly two decades of ABSA research development but also unveils a systemic lack of dataset and domain diversity as well as domain mismatch that may hinder the development of future ABSA research. We discuss these findings and their implications and propose suggestions for future research.

View on arXiv
Comments on this paper