ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.11608
57
42

Taiyi: A Bilingual Fine-Tuned Large Language Model for Diverse Biomedical Tasks

20 November 2023
Ling Luo
Jinzhong Ning
Yingwen Zhao
Zhijun Wang
Zeyuan Ding
Peng Chen
Weiru Fu
Qinyu Han
Guangtao Xu
Yunzhi Qiu
Dinghao Pan
Jiru Li
Hao Li
Wenduo Feng
Senbo Tu
Yuqi Liu
Zhihao Yang
Jian Wang
Yuanyuan Sun
Hongfei Lin
    LM&MA
ArXivPDFHTML
Abstract

Objective: Most existing fine-tuned biomedical large language models (LLMs) focus on enhancing performance in monolingual biomedical question answering and conversation tasks. To investigate the effectiveness of the fine-tuned LLMs on diverse biomedical NLP tasks in different languages, We present Taiyi, a bilingual fine-tuned LLM for diverse biomedical tasks. Materials and Methods: We first curated a comprehensive collection of 140 existing biomedical text mining datasets (102 English and 38 Chinese datasets) across over 10 task types. Subsequently, a two-stage strategy is proposed for supervised fine-tuning to optimize the model performance across varied tasks. Results: Experimental results on 13 test sets covering named entity recognition, relation extraction, text classification, question answering tasks demonstrate that Taiyi achieves superior performance compared to general LLMs. The case study involving additional biomedical NLP tasks further shows Taiyi's considerable potential for bilingual biomedical multi-tasking. Conclusion: Leveraging rich high-quality biomedical corpora and developing effective fine-tuning strategies can significantly improve the performance of LLMs within the biomedical domain. Taiyi shows the bilingual multi-tasking capability through supervised fine-tuning. However, those tasks such as information extraction that are not generation tasks in nature remain challenging for LLM-based generative approaches, and they still underperform the conventional discriminative approaches of smaller language models.

View on arXiv
Comments on this paper