ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.11974
8
0

Evaluating Supervision Levels Trade-Offs for Infrared-Based People Counting

20 November 2023
David Latortue
Moetez Kdayem
F. Guerrero-Peña
Eric Granger
M. Pedersoli
ArXivPDFHTML
Abstract

Object detection models are commonly used for people counting (and localization) in many applications but require a dataset with costly bounding box annotations for training. Given the importance of privacy in people counting, these models rely more and more on infrared images, making the task even harder. In this paper, we explore how weaker levels of supervision can affect the performance of deep person counting architectures for image classification and point-level localization. Our experiments indicate that counting people using a CNN Image-Level model achieves competitive results with YOLO detectors and point-level models, yet provides a higher frame rate and a similar amount of model parameters.

View on arXiv
Comments on this paper