ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.12342
28
9

LoCo: Locally Constrained Training-Free Layout-to-Image Synthesis

21 November 2023
Peiang Zhao
Han Li
Ruiyang Jin
S. Kevin Zhou
    DiffM
ArXivPDFHTML
Abstract

Recent text-to-image diffusion models have reached an unprecedented level in generating high-quality images. However, their exclusive reliance on textual prompts often falls short in precise control of image compositions. In this paper, we propose LoCo, a training-free approach for layout-to-image Synthesis that excels in producing high-quality images aligned with both textual prompts and layout instructions. Specifically, we introduce a Localized Attention Constraint (LAC), leveraging semantic affinity between pixels in self-attention maps to create precise representations of desired objects and effectively ensure the accurate placement of objects in designated regions. We further propose a Padding Token Constraint (PTC) to leverage the semantic information embedded in previously neglected padding tokens, improving the consistency between object appearance and layout instructions. LoCo seamlessly integrates into existing text-to-image and layout-to-image models, enhancing their performance in spatial control and addressing semantic failures observed in prior methods. Extensive experiments showcase the superiority of our approach, surpassing existing state-of-the-art training-free layout-to-image methods both qualitatively and quantitatively across multiple benchmarks.

View on arXiv
Comments on this paper