ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.12862
39
6

TorchSparse++: Efficient Training and Inference Framework for Sparse Convolution on GPUs

25 October 2023
Haotian Tang
Shang Yang
Zhijian Liu
Ke Hong
Zhongming Yu
Xiuyu Li
Guohao Dai
Yu Wang
Song Han
ArXivPDFHTML
Abstract

Sparse convolution plays a pivotal role in emerging workloads, including point cloud processing in AR/VR, autonomous driving, and graph understanding in recommendation systems. Since the computation pattern is sparse and irregular, specialized high-performance kernels are required. Existing GPU libraries offer two dataflow types for sparse convolution. The gather-GEMM-scatter dataflow is easy to implement but not optimal in performance, while the dataflows with overlapped computation and memory access (e.g.implicit GEMM) are highly performant but have very high engineering costs. In this paper, we introduce TorchSparse++, a new GPU library that achieves the best of both worlds. We create a highly efficient Sparse Kernel Generator that generates performant sparse convolution kernels at less than one-tenth of the engineering cost of the current state-of-the-art system. On top of this, we design the Sparse Autotuner, which extends the design space of existing sparse convolution libraries and searches for the best dataflow configurations for training and inference workloads. Consequently, TorchSparse++ achieves 2.9x, 3.3x, 2.2x and 1.7x measured end-to-end speedup on an NVIDIA A100 GPU over state-of-the-art MinkowskiEngine, SpConv 1.2, TorchSparse and SpConv v2 in inference; and is 1.2-1.3x faster than SpConv v2 in mixed precision training across seven representative autonomous driving benchmarks. It also seamlessly supports graph convolutions, achieving 2.6-7.6x faster inference speed compared with state-of-the-art graph deep learning libraries.

View on arXiv
Comments on this paper