ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.13610
80
3

TRIDENT: The Nonlinear Trilogy for Implicit Neural Representations

21 November 2023
Zhenda Shen
Yanqi Cheng
Raymond H. Chan
Pietro Lio
Carola-Bibiane Schönlieb
Angelica I Aviles-Rivero
ArXiv (abs)PDFHTML
Abstract

Implicit neural representations (INRs) have garnered significant interest recently for their ability to model complex, high-dimensional data without explicit parameterisation. In this work, we introduce TRIDENT, a novel function for implicit neural representations characterised by a trilogy of nonlinearities. Firstly, it is designed to represent high-order features through order compactness. Secondly, TRIDENT efficiently captures frequency information, a feature called frequency compactness. Thirdly, it has the capability to represent signals or images such that most of its energy is concentrated in a limited spatial region, denoting spatial compactness. We demonstrated through extensive experiments on various inverse problems that our proposed function outperforms existing implicit neural representation functions.

View on arXiv
Comments on this paper