ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.14189
8
1

D-SCo: Dual-Stream Conditional Diffusion for Monocular Hand-Held Object Reconstruction

23 November 2023
Bowen Fu
Gu Wang
Chenyangguang Zhang
Yan Di
Ziqin Huang
Zhiying Leng
Fabian Manhardt
Xiangyang Ji
F. Tombari
ArXivPDFHTML
Abstract

Reconstructing hand-held objects from a single RGB image is a challenging task in computer vision. In contrast to prior works that utilize deterministic modeling paradigms, we employ a point cloud denoising diffusion model to account for the probabilistic nature of this problem. In the core, we introduce centroid-fixed dual-stream conditional diffusion for monocular hand-held object reconstruction (D-SCo), tackling two predominant challenges. First, to avoid the object centroid from deviating, we utilize a novel hand-constrained centroid fixing paradigm, enhancing the stability of diffusion and reverse processes and the precision of feature projection. Second, we introduce a dual-stream denoiser to semantically and geometrically model hand-object interactions with a novel unified hand-object semantic embedding, enhancing the reconstruction performance of the hand-occluded region of the object. Experiments on the synthetic ObMan dataset and three real-world datasets HO3D, MOW and DexYCB demonstrate that our approach can surpass all other state-of-the-art methods. Codes will be released.

View on arXiv
Comments on this paper