15
2

Evaluating Large Language Models through Gender and Racial Stereotypes

Abstract

Language Models have ushered a new age of AI gaining traction within the NLP community as well as amongst the general population. AI's ability to make predictions, generations and its applications in sensitive decision-making scenarios, makes it even more important to study these models for possible biases that may exist and that can be exaggerated. We conduct a quality comparative study and establish a framework to evaluate language models under the premise of two kinds of biases: gender and race, in a professional setting. We find out that while gender bias has reduced immensely in newer models, as compared to older ones, racial bias still exists.

View on arXiv
Comments on this paper