ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.16120
17
6

Sanity checks for patch visualisation in prototype-based image classification

25 October 2023
Romain Xu-Darme
Georges Quénot
Zakaria Chihani
M. Rousset
ArXivPDFHTML
Abstract

In this work, we perform an analysis of the visualisation methods implemented in ProtoPNet and ProtoTree, two self-explaining visual classifiers based on prototypes. We show that such methods do not correctly identify the regions of interest inside of the images, and therefore do not reflect the model behaviour, which can create a false sense of bias in the model. We also demonstrate quantitatively that this issue can be mitigated by using other saliency methods that provide more faithful image patches.

View on arXiv
Comments on this paper