ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.16148
25
0
v1v2 (latest)

Univariate Radial Basis Function Layers: Brain-inspired Deep Neural Layers for Low-Dimensional Inputs

7 November 2023
Daniel Jost
Basavasagar Patil
Xavier Alameda-Pineda
ArXiv (abs)PDFHTML
Abstract

Deep Neural Networks (DNNs) became the standard tool for function approximation with most of the introduced architectures being developed for high-dimensional input data. However, many real-world problems have low-dimensional inputs for which standard Multi-Layer Perceptrons (MLPs) are the default choice. An investigation into specialized architectures is missing. We propose a novel DNN layer called Univariate Radial Basis Function (U-RBF) layer as an alternative. Similar to sensory neurons in the brain, the U-RBF layer processes each individual input dimension with a population of neurons whose activations depend on different preferred input values. We verify its effectiveness compared to MLPs in low-dimensional function regressions and reinforcement learning tasks. The results show that the U-RBF is especially advantageous when the target function becomes complex and difficult to approximate.

View on arXiv
Comments on this paper