ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.16154
22
2

Stepping out of Flatland: Discovering Behavior Patterns as Topological Structures in Cyber Hypergraphs

8 November 2023
Helen Jenne
Sinan G. Aksoy
Daniel M. Best
Alyson Bittner
Gregory Henselman-Petrusek
C. Joslyn
Bill Kay
Audun Myers
Garret Seppala
Jackson Warley
Stephen J. Young
Emilie Purvine
ArXiv (abs)PDFHTML
Abstract

Data breaches and ransomware attacks occur so often that they have become part of our daily news cycle. This is due to a myriad of factors, including the increasing number of internet-of-things devices, shift to remote work during the pandemic, and advancement in adversarial techniques, which all contribute to the increase in both the complexity of data captured and the challenge of protecting our networks. At the same time, cyber research has made strides, leveraging advances in machine learning and natural language processing to focus on identifying sophisticated attacks that are known to evade conventional measures. While successful, the shortcomings of these methods, particularly the lack of interpretability, are inherent and difficult to overcome. Consequently, there is an ever-increasing need to develop new tools for analyzing cyber data to enable more effective attack detection. In this paper, we present a novel framework based in the theory of hypergraphs and topology to understand data from cyber networks through topological signatures, which are both flexible and can be traced back to the log data. While our approach's mathematical grounding requires some technical development, this pays off in interpretability, which we will demonstrate with concrete examples in a large-scale cyber network dataset. These examples are an introduction to the broader possibilities that lie ahead; our goal is to demonstrate the value of applying methods from the burgeoning fields of hypernetwork science and applied topology to understand relationships among behaviors in cyber data.

View on arXiv
Comments on this paper