ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.16522
13
0

Dynamic Fault Characteristics Evaluation in Power Grid

28 November 2023
Hao Pei
Si Lin
Chuanfu Li
Che Wang
Hao Chen
Sizhe Li
ArXivPDFHTML
Abstract

To enhance the intelligence degree in operation and maintenance, a novel method for fault detection in power grids is proposed. The proposed GNN-based approach first identifies fault nodes through a specialized feature extraction method coupled with a knowledge graph. By incorporating temporal data, the method leverages the status of nodes from preceding and subsequent time periods to help current fault detection. To validate the effectiveness of the node features, a correlation analysis of the output features from each node was conducted. The results from experiments show that this method can accurately locate fault nodes in simulation scenarios with a remarkable accuracy. Additionally, the graph neural network based feature modeling allows for a qualitative examination of how faults spread across nodes, which provides valuable insights for analyzing fault nodes.

View on arXiv
Comments on this paper