ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.17057
10
17

ReMoS: 3D Motion-Conditioned Reaction Synthesis for Two-Person Interactions

28 November 2023
Anindita Ghosh
Rishabh Dabral
Vladislav Golyanik
Christian Theobalt
Philipp Slusallek
ArXivPDFHTML
Abstract

Current approaches for 3D human motion synthesis generate high-quality animations of digital humans performing a wide variety of actions and gestures. However, a notable technological gap exists in addressing the complex dynamics of multi-human interactions within this paradigm. In this work, we present ReMoS, a denoising diffusion-based model that synthesizes full-body reactive motion of a person in a two-person interaction scenario. Assuming the motion of one person is given, we employ a combined spatio-temporal cross-attention mechanism to synthesize the reactive body and hand motion of the second person, thereby completing the interactions between the two. We demonstrate ReMoS across challenging two-person scenarios such as pair-dancing, Ninjutsu, kickboxing, and acrobatics, where one person's movements have complex and diverse influences on the other. We also contribute the ReMoCap dataset for two-person interactions containing full-body and finger motions. We evaluate ReMoS through multiple quantitative metrics, qualitative visualizations, and a user study, and also indicate usability in interactive motion editing applications.

View on arXiv
Comments on this paper