ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.17923
8
0

Enhanced Generative Adversarial Networks for Unseen Word Generation from EEG Signals

14 November 2023
Young-Eun Lee
Seo-Hyun Lee
Soowon Kim
Jung-Sun Lee
Deok-Seon Kim
Seong-Whan Lee
ArXivPDFHTML
Abstract

Recent advances in brain-computer interface (BCI) technology, particularly based on generative adversarial networks (GAN), have shown great promise for improving decoding performance for BCI. Within the realm of Brain-Computer Interfaces (BCI), GANs find application in addressing many areas. They serve as a valuable tool for data augmentation, which can solve the challenge of limited data availability, and synthesis, effectively expanding the dataset and creating novel data formats, thus enhancing the robustness and adaptability of BCI systems. Research in speech-related paradigms has significantly expanded, with a critical impact on the advancement of assistive technologies and communication support for individuals with speech impairments. In this study, GANs were investigated, particularly for the BCI field, and applied to generate text from EEG signals. The GANs could generalize all subjects and decode unseen words, indicating its ability to capture underlying speech patterns consistent across different individuals. The method has practical applications in neural signal-based speech recognition systems and communication aids for individuals with speech difficulties.

View on arXiv
Comments on this paper