ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.18141
13
2

RDMA-Based Algorithms for Sparse Matrix Multiplication on GPUs

29 November 2023
Benjamin Brock
A. Buluç
Katherine Yelick
ArXivPDFHTML
Abstract

Sparse matrix multiplication is an important kernel for large-scale graph processing and other data-intensive applications. In this paper, we implement various asynchronous, RDMA-based sparse times dense (SpMM) and sparse times sparse (SpGEMM) algorithms, evaluating their performance running in a distributed memory setting on GPUs. Our RDMA-based implementations use the NVSHMEM communication library for direct, asynchronous one-sided communication between GPUs. We compare our asynchronous implementations to state-of-the-art bulk synchronous GPU libraries as well as a CUDA-aware MPI implementation of the SUMMA algorithm. We find that asynchronous RDMA-based implementations are able to offer favorable performance compared to bulk synchronous implementations, while also allowing for the straightforward implementation of novel work stealing algorithms.

View on arXiv
Comments on this paper