ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.18216
17
1

FS-BAND: A Frequency-Sensitive Banding Detector

30 November 2023
Zijian Chen
Wei Sun
Zicheng Zhang
Ru Huang
Fangfang Lu
Xiongkuo Min
Guangtao Zhai
Wenjun Zhang
ArXivPDFHTML
Abstract

Banding artifact, as known as staircase-like contour, is a common quality annoyance that happens in compression, transmission, etc. scenarios, which largely affects the user's quality of experience (QoE). The banding distortion typically appears as relatively small pixel-wise variations in smooth backgrounds, which is difficult to analyze in the spatial domain but easily reflected in the frequency domain. In this paper, we thereby study the banding artifact from the frequency aspect and propose a no-reference banding detection model to capture and evaluate banding artifacts, called the Frequency-Sensitive BANding Detector (FS-BAND). The proposed detector is able to generate a pixel-wise banding map with a perception correlated quality score. Experimental results show that the proposed FS-BAND method outperforms state-of-the-art image quality assessment (IQA) approaches with higher accuracy in banding classification task.

View on arXiv
Comments on this paper