ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.18348
318
6
v1v2 (latest)

Reconstructing Historical Climate Fields With Deep Learning

Science Advances (Sci Adv), 2023
30 November 2023
Nils Bochow
Anna Poltronieri
M. Rypdal
Niklas Boers
    AI4ClAI4CE
ArXiv (abs)PDFHTML
Main:48 Pages
19 Figures
1 Tables
Abstract

Historical records of climate fields are often sparse due to missing measurements, especially before the introduction of large-scale satellite missions. Several statistical and model-based methods have been introduced to fill gaps and reconstruct historical records. Here, we employ a recently introduced deep-learning approach based on Fourier convolutions, trained on numerical climate model output, to reconstruct historical climate fields. Using this approach we are able to realistically reconstruct large and irregular areas of missing data, as well as reconstruct known historical events such as strong El Ni\~no and La Ni\~na with very little given information. Our method outperforms the widely used statistical kriging method as well as other recent machine learning approaches. The model generalizes to higher resolutions than the ones it was trained on and can be used on a variety of climate fields. Moreover, it allows inpainting of masks never seen before during the model training.

View on arXiv
Comments on this paper