ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.18576
13
3

Fixed-length Dense Descriptor for Efficient Fingerprint Matching

30 November 2023
Zhiyu Pan
Yongjie Duan
Jianjiang Feng
Jie Zhou
ArXivPDFHTML
Abstract

In fingerprint matching, fixed-length descriptors generally offer greater efficiency compared to minutiae set, but the recognition accuracy is not as good as that of the latter. Although much progress has been made in deep learning based fixed-length descriptors recently, they often fall short when dealing with incomplete or partial fingerprints, diverse fingerprint poses, and significant background noise. In this paper, we propose a three-dimensional representation called Fixed-length Dense Descriptor (FDD) for efficient fingerprint matching. FDD features great spatial properties, enabling it to capture the spatial relationships of the original fingerprints, thereby enhancing interpretability and robustness. Our experiments on various fingerprint datasets reveal that FDD outperforms other fixed-length descriptors, especially in matching fingerprints of different areas, cross-modal fingerprint matching, and fingerprint matching with background noise.

View on arXiv
Comments on this paper