ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.00794
37
3

Informative Priors Improve the Reliability of Multimodal Clinical Data Classification

17 November 2023
L. J. L. Lopez
Tim G. J. Rudner
Karan Singhal
ArXivPDFHTML
Abstract

Machine learning-aided clinical decision support has the potential to significantly improve patient care. However, existing efforts in this domain for principled quantification of uncertainty have largely been limited to applications of ad-hoc solutions that do not consistently improve reliability. In this work, we consider stochastic neural networks and design a tailor-made multimodal data-driven (M2D2) prior distribution over network parameters. We use simple and scalable Gaussian mean-field variational inference to train a Bayesian neural network using the M2D2 prior. We train and evaluate the proposed approach using clinical time-series data in MIMIC-IV and corresponding chest X-ray images in MIMIC-CXR for the classification of acute care conditions. Our empirical results show that the proposed method produces a more reliable predictive model compared to deterministic and Bayesian neural network baselines.

View on arXiv
Comments on this paper