ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.00960
24
8

The Cost of Compression: Investigating the Impact of Compression on Parametric Knowledge in Language Models

1 December 2023
Srinath Namburi
Makesh Narsimhan Sreedhar
Srinath Srinivasan
Frederic Sala
    MQ
ArXivPDFHTML
Abstract

Compressing large language models (LLMs), often consisting of billions of parameters, provides faster inference, smaller memory footprints, and enables local deployment. Two standard compression techniques are pruning and quantization, with the former eliminating redundant connections in model layers and the latter representing model parameters with fewer bits. The key tradeoff is between the degree of compression and the impact on the quality of the compressed model. Existing research on LLM compression primarily focuses on performance in terms of general metrics like perplexity or downstream task accuracy. More fine-grained metrics, such as those measuring parametric knowledge, remain significantly underexplored. To help bridge this gap, we present a comprehensive analysis across multiple model families (ENCODER, ENCODER-DECODER, and DECODER) using the LAMA and LM-HARNESS benchmarks in order to systematically quantify the effect of commonly employed compression techniques on model performance. A particular focus is on tradeoffs involving parametric knowledge, with the goal of providing practitioners with practical insights to help make informed decisions on compression. We release our codebase1 to enable further research.

View on arXiv
Comments on this paper