ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.02125
11
0

TPPoet: Transformer-Based Persian Poem Generation using Minimal Data and Advanced Decoding Techniques

4 December 2023
Amir Panahandeh
Hanie Asemi
Esmail Nourani
ArXivPDFHTML
Abstract

Recent advances in language models (LMs), have demonstrated significant efficacy in tasks related to the arts and humanities. While LMs have exhibited exceptional performance across a wide range of natural language processing tasks, there are notable challenges associated with their utilization on small datasets and their ability to replicate more creative human capacities. In this study, we aim to address these challenges by training a Persian classical poetry generation model using a transformer architecture on a specialized dataset with no pretraining. Additionally, we propose a novel decoding method to enhance coherence and meaningfulness in the generated poetry, effectively managing the tradeoff between diversity and quality. Furthermore, the results of our training approach and the proposed decoding method are evaluated through comprehensive set of automatic and human evaluations and showed its superior capability to generate coherent and meaningful poetry in compare to other decoding methods and an existing Persian large language model (LLM).

View on arXiv
Comments on this paper