ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.02136
19
4

BerfScene: Bev-conditioned Equivariant Radiance Fields for Infinite 3D Scene Generation

4 December 2023
Qihang Zhang
Yinghao Xu
Yujun Shen
Bo Dai
Bolei Zhou
Ceyuan Yang
ArXivPDFHTML
Abstract

Generating large-scale 3D scenes cannot simply apply existing 3D object synthesis technique since 3D scenes usually hold complex spatial configurations and consist of a number of objects at varying scales. We thus propose a practical and efficient 3D representation that incorporates an equivariant radiance field with the guidance of a bird's-eye view (BEV) map. Concretely, objects of synthesized 3D scenes could be easily manipulated through steering the corresponding BEV maps. Moreover, by adequately incorporating positional encoding and low-pass filters into the generator, the representation becomes equivariant to the given BEV map. Such equivariance allows us to produce large-scale, even infinite-scale, 3D scenes via synthesizing local scenes and then stitching them with smooth consistency. Extensive experiments on 3D scene datasets demonstrate the effectiveness of our approach. Our project website is at https://zqh0253.github.io/BerfScene/.

View on arXiv
Comments on this paper